Hierarchical meta-rules for scalable meta-learning

Author: Bernhard Pfahringer, Quan Sun
Publisher: Springer Science and Business Media LLC

ABOUT BOOK

The Pairwise Meta-Rules (PMR) method proposed in [18] has been shown to improve the predictive performances of several metalearning algorithms for the algorithm ranking problem. Given m target objects (e.g., algorithms), the training complexity of the PMR method with respect to m is quadratic: (formula presented). This is usually not a problem when m is moderate, such as when ranking 20 different learning algorithms. However, for problems with a much larger m, such as the meta-learning-based parameter ranking problem, where m can be 100+, the PMR method is less efficient. In this paper, we propose a novel method named Hierarchical Meta-Rules (HMR), which is based on the theory of orthogonal contrasts. The proposed HMR method has a linear training complexity with respect to m, providing a way of dealing with a large number of objects that the PMR method cannot handle efficiently. Our experimental results demonstrate the benefit of the new method in the context of meta-learning

Powered by: