Are you sure you want to log out?
Learning Relatedness Measures for Entity Linking
ABOUT BOOK
Entity Linking is the task of detecting, in text documents, relevant mentions to entities of a given knowledge base. To this end, entity-linking algorithms use several signals and features extracted from the input text or from the knowl- edge base. The most important of such features is entity relatedness. Indeed, we argue that these algorithms benefit from maximizing the relatedness among the relevant enti- ties selected for annotation, since this minimizes errors in disambiguating entity-linking. The definition of an e↵ective relatedness function is thus a crucial point in any entity-linking algorithm. In this paper we address the problem of learning high-quality entity relatedness functions. First, we formalize the problem of learning entity relatedness as a learning-to-rank problem. We propose a methodology to create reference datasets on the basis of manually annotated data. Finally, we show that our machine-learned entity relatedness function performs better than other relatedness functions previously proposed, and, more importantly, improves the overall performance of dif- ferent state-of-the-art entity-linking algorithms