Are you sure you want to log out?
Nonlinear model predictive control for hydrogen production in an ethanol steam reformer with membrane separation
ABOUT BOOK
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper presents a new Nonlinear Model Predictive Control (NMPC) design for an Ethanol Steam Reformer with Pd-Ag membrane separation stage. The reformer is used to produce pure hydrogen able to feed a Proton Exchange Membrane Fuel Cell. Mass and energy balances are used to obtain the nonlinear dynamic model of both the reforming and the separation stages. Constraints, system nonlinearities and flexible cost function are the main reasons to select an NMPC controller, which is tested against the ordinary differential equations as simulation model, and has an internal model based on the sample data technique.Accepted versio